
Bridging Lossy and Lossless Compression

by Motif Pattern Discovery∗

Alberto Apostolico† Matteo Comin‡ Laxmi Parida §

Abstract

We present data compression techniques hinged on the notion of a motif, interpreted here as a string of
intermittently solid and wild characters that recurs more or less frequently in an input sequence or family
of sequences. This notion arises originally in the analysis of sequences, particularly biomolecules, due to its
multiple implications in the understanding of biological structure and function, and it has been the subject
of various characterizations and study. Correspondingly, motif discovery techniques and tools have been
devised. This task is made hard by the circumstance that the number of motifs identifiable in general in a
sequence can be exponential in the size of that sequence. A significant gain in the direction of reducing the
number of motifs is achieved through the introduction of irredundant motifs, which in intuitive terms are
motifs of which the structure and list of occurrences cannot be inferred by a combination of other motifs’
occurrences. Although suboptimal, the available procedures for the extraction of some such motifs are not
prohibitively expensive. Here we show that irredundant motifs can be usefully exploited in lossy compression
methods based on textual substitution and suitable for signals as well as text. Actually, once the motifs
in our lossy encodings are disambiguated into corresponding lossless codebooks, they still prove capable of
yielding savings over popular methods in use. Preliminary experiments with these fungible strategies at the
crossroads of lossless and lossy data compression show performances that improve over popular methods (i.e.
GZip) by more than 20% in lossy and 10% in lossless implementations.
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1 Introduction

Data compression methods are partitioned traditionally into lossy and lossless. Typically, lossy
compression is applied to images and more in general to signals susceptible to some degeneracy
without lethal consequence. On the other hand, lossless compression is used in situations where
fidelity is of the essence, which applies to high quality documents and perhaps most notably to
textfiles. Lossy methods rest mostly on transform techniques whereby, for instance, cuts are ap-
plied in the frequency, rather than in the time domain of a signal. By contrast, lossless textual
substitution methods are applied to the input in native form, and exploit its redundancy in terms
of more or less repetitive segments or patterns.

When textual substitution is applied to digital documents such as fax, image or audio signal
data, one could afford some loss of information in exchange for savings in time or space. In fact,
even natural language can easily sustain some degrees of indeterminacy where it is left for the reader
to fill in the gaps. The two versions below of the opening passage from the Book1 of the Calgary
Corpus, for instance, are equally understandable by an average reader and yet when applied to the
entire book the first variant requires 163,837 less bytes than the second one, out of 764,772.

DESCRIPTION OF FARMER OAK – AN INCIDENT When Farmer Oak smile., the corners .f his
mouth spread till the. were within an unimportant distance .f his ears, his eye. were reduced to chinks,
and ...erging wrinklered round them, extending upon ... countenance li.e the rays in a rudimentary sketch
of the rising sun. His Christian name was Gabriel, and on working days he was a young man of sound
judgment, easy motions, proper dress, and ...eral good character. On Sundays, he was a man of misty
views rather given to postponing, and .ampered by his best clothes and umbrella : upon ... whole, one
who felt himself to occupy morally that ... middle space of Laodicean neutrality which ... between the
Communion people of the parish and the drunken section, – that ... he went to church, but yawned
privately by the t.ime the cong.egation reached the Nicene creed,- and thought of what there would be for
dinner when he meant to be listening to the sermon.

DESCRIPTION OF FARMER OAK – AN INCIDENT When Farmer Oak smiled, the corners of his
mouth spread till they were within an unimportant distance of his ears, his eyes were reduced to chinks,
and diverging wrinkles appeared round them, extending upon his countenance like the rays in a rudimentary
sketch of the rising sun. His Christian name was Gabriel, and on working days he was a young man of
sound judgment, easy motions, proper dress, and general good character. On Sundays he was a man of
misty views, rather given to postponing, and hampered by his best clothes and umbrella : upon the whole,
one who felt himself to occupy morally that vast middle space of Laodicean neutrality which lay between
the Communion people of the parish and the drunken section, – that is, he went to church, but yawned
privately by the time the congregation reached the Nicene creed,- and thought of what there would be for
dinner when he meant to be listening to the sermon.

In practice, the development of optimal lossless textual substitution methods is made hard by the
circumstance that the majority of the schemes are NP-hard [27]. Obviously, this situation cannot
improve with lossy ones. As an approximation, heuristic off-line methods of textual substitution can
be based on greedy iterative selection as follows (see e.g., [2, 6, 10]). At each iteration, a substring
w of the text x is identified such that encoding a maximal set of non-overlapping instances of w in
x yields the highest possible contraction of x; this process is repeated on the contracted textstring,
until substrings capable of producing contractions can no longer be found. This may be regarded
as inferring a “straight line” grammar [15, 16, 19] by repeatedly finding the production or rule that,
upon replacing each occurrence of the “definition” by the corresponding “nonterminal”, maximizes
the reduction in size of the current textstring representation. Recent implementations of such
greedy off-line strategies [6] compare favorably with other current methods, particularly as applied
to ensembles of otherwise hardly compressible inputs such as biosequences. They also appear to
be the most promising ones in terms of the achievable approximation to optimum descriptor sizes
[19].

Off-line methods can be particularly advantageous in applications such as mass production of
Cd-Roms, backup archiving, and any other scenario where extra time or parallel implementation
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may warrant the additional effort imposed by the encoding (see, e.g., [14]).
The idea of trading some amount of errors in reconstruction in exchange for increased compres-

sion is ingrained in Rate Distortion Theory [11, 12], and has been recently revived in a number
of papers, mostly dealing with the design and analysis of lossy extensions of Lempel-Ziv on-line
schemata. We refer to, e.g., [17, 18, 21], and references therein. In this paper, we follow an approach
based on the notion of a motif, a kind of redundancy emerged particularly in molecular biology
and genomic studies. In loose terms, a motif consists of a string of intermittently solid and wild
characters, and appearing more or less frequently in an input sequence. Because motifs seem to be
implicated in many manipulations of biological as well as more general sequences, techniques for
their discovery are of broad interest. We refer to the quoted literature for a more comprehensive
discussion. In a nutshell, the role of motifs in our constructions is to capture the auto-correlation
in the data by global pattern discovery. The combinatorial structure of our motifs is engineered
to minimize redundancy in the “codebook”. The presence of a controlled number of don’t care
characters enhances the compression achievable in the subsequent stage of off-line greedy textual
substitution.

In general, the motif discovery and use is made particularly difficult by the fact that the number
of candidate motifs in a sequence grows exponentially with the length of that string. Fortunately, a
significant reduction in the basis of candidate motifs is possible in some cases. In the context of our
textual substitution schemes, for instance, it comes natural to impose that the motif chosen at each
iteration satisfies certain maximality conditions that prevent forfeiting information gratuitously.
To begin with, once a motif is chosen it seems reasonable to exploit the set of its occurrences to the
fullest, compatibly with self-overlaps. Likewise, it seems reasonable to exclude from consideration
motifs that could be enriched in terms of solid characters without prejudice in the corresponding
set of occurrences.

Recently, a class of motifs called “irredundant” has been identified along these lines that grows
linearly with input size [7, 8, 9]. We examine here the application of such motifs to various scenarios
of lossy and lossless compression. As it turns out, significant savings can be obtained with this
approach.

This paper is organized as follows. In the next section, we recall some basic definitions and
properties, and the combinatorial facts subtending to our construction. Section 3 is devoted to the
description of our method and the section that follows lists preliminary experiments. Conclusions
and plans of future work close the paper.

2 Notions and Properties

Let s = s1s2...sn be a string of length |s| = n over an alphabet Σ. We use sufi to denote the suffix
sisi+1...sn of s and s[i] for the i-th symbol. A character from Σ, say σ, is called a solid character
and ‘.’ is called a “don’t care” character.

Definition 1 (σ1 ≺, =,¹ σ2) If σ1 is a don’t care character then σ1 ≺ σ2. If both σ1 and σ2 are
identical characters in Σ, then σ1 = σ2. If either σ1 ≺ σ2 or σ1 = σ2 holds, then σ1 ¹ σ2.

Definition 2 (p occurs at l, Cover) A string, p, on Σ∪‘.‘, occurs at position l in s if p[j] ¹ s[l+j−1]
holds for 1 ≤ j ≤ |p|. String p is said to cover the interval [l, l + |p| − 1] on s.

A motif is any element of Σ or any string on Σ · (Σ ∪ {.})∗ · Σ.

Definition 3 (k-Motif m, Location list Lm) Given a string s on alphabet Σ and a positive integer
k, k ≤ |s|, a string m on Σ ∪ ‘.‘ is a motif with location list Lm = (l1, l2, . . . , lq), if all of the

3



following hold: (1) m[1],m[|m|] ∈ Σ, (2) q ≥ k, and (3) there does not exist a location l, l 6= li,
1 ≤ i ≤ q such that m occurs at l on s (the location list is of maximal size).

The first condition ensures that the first and last characters of the motif are solid characters; if
don’t care characters are allowed at the ends, the motifs can be made arbitrarily long in size without
conveying any extra information. The third condition ensures that any two distinct location lists
must correspond to distinct motifs.

Using the definition of motifs, the different 2-motifs are as follows: m1 = ab with Lm1 = {1, 5},
m2 = bc with Lm2 = {2, 6}, m3 = cd with Lm3 = {3, 7}, m4 = abc with Lm4 = {1, 5}, m5 = bcd
with Lm5 = {2, 6} and m6 = abcd with Lm6 = {1, 5}.

Notice that Lm1 = Lm4 = Lm6 and Lm2 = Lm5 . Using the notation L + i = {x + i|x ∈ L},
Lm5 = Lm6 + 1 and Lm3 = Lm6 + 2 hold. We call the motif m6 maximal as |m6| > |m1|, |m4| and
|m5| > |m2|. Motifs m1, m2, m3, m4 and m5 are non-maximal motifs.

We give the definition of maximality below. In intuitive terms, a motif m is maximal if we
cannot make it more specific or longer while retaining the list Lm of its occurrences in s.

Definition 4 (m1 ¹ m2) Given two motifs m1 and m2 with |m1| ≤ |m2|, m1 ¹ m2 holds if
m1[j] ¹ m2[j + d], with d ≥ 0 and 1 ≤ j ≤ |m1|.

We also say in this case that m1 is a sub-motif of m2, and that m2 implies or extends or covers
m1. If, moreover, the first characters of m1 and m2 match then m1 is also called a prefix of m2.
For example, let m1 = ab..e, m2 = ak..e and m3 = abc.e.g. Then m1 ¹ m3, and m2 6¹ m3. The
following lemma is straightforward to verify.

Lemma 1 If m1 ¹ m2 then ∃ d | Lm1 ⊇ Lm2 + d, and if m1 ¹ m2, m2 ¹ m3, then m1 ¹ m3.

Definition 5 (Maximal Motif) Let m1, m2, . . ., mk be the motifs in a string s. A motif mi is
maximal in composition if and only if there exists no ml, l 6= i with Lmi = Lml

and mi ¹ ml. A
motif mi, maximal in composition, is also maximal in length if and only if there exists no motif
mj, j 6= i, such that mi is a sub-motif of mj and |Lmi | = |Lmj |. A maximal motif is a motif that
is maximal both in composition and in length.

Requiring maximality in composition and length limits the number of motifs that may be
usefully extracted and accounted for in a string. However, the notion of maximality alone does not
suffice to bound the number of such motifs. It can be shown that there are strings that have an
unusually large number of maximal motifs without conveying extra information about the input.

A maximal motif m is irredundant if m and the list Lm of its occurrences cannot be deduced by
the union of a number of lists of other maximal motifs. Conversely, we call a motif m redundant
if m (and its location list Lm) can be deduced from the other motifs without knowing the input
string s. More formally:

Definition 6 (Redundant motif) A maximal motif m, with location list Lm, is redundant if there
exist maximal sub-motifs mi, 1 ≤ i ≤ p, such that Lm = Lm1∪Lm2 . . .∪Lmp, (i.e., every occurrence
of m on s is already implied by one of the motifs m1,m2, . . . ,mp).

Definition 7 (Irredundant motif) A maximal motif that is not redundant is called an irredundant
motif.

We use Bi to denote the set of irredundant motifs in sufi. Set Bi is called the basis for the
motifs of sufi. Thus, in particular, the basis B of s coincides with B1.
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Definition 8 (Basis) Given a sequence s on an alphabet Σ, let M be the set of all maximal motifs
on s. A set of maximal motifs B is called a basis of M iff the following hold: (1) for each m ∈ B,
m is irredundant with respect to B−{m}, and, (2) let G(X ) be the set of all the redundant maximal
motifs generated by the set of motifs X , then M = G(B).

In general, |M| = Ω(2n). The natural attempt now is to obtain as small a basis as possible.
Before getting to that, we examine some basic types of maximality.

Lemma 2 Let m be a maximal motif with no don’t care and |Lm| = 1, then m = s.

Proof: Any motif with those properties can be completed into s, by the notion of maximality.

Lemma 3 Let m be a maximal motif with at least one don’t care, then |Lm| ≥ 2.

Proof: Under the hypothesis, it must be |m| > 1. The rest is a straightforward consequence of
the notion of maximality.

Lemmas 2 and 3 tell us that, other than the string s itself and the characters of the alphabet,
the only maximal motifs of interest have more than one occurrence. Solid motifs, i.e., motifs that
do not contain any don’t care symbol, enjoy a number of nice features that make it pedagogically
expedient to consider them separately. Let the equivalence relation ≡s be defined on a string s
by setting y ≡s w if Ly = Lw. Recall that the index of an equivalence relation is the number of
equivalence classes in it. The following well known fact from [13] shows that the number of maximal
motifs with no don’t care is linear in the length of the textstring. It descends from the observation
that for any two substrings y and w of s, if Lw ∩ Ly is not empty then y is a prefix of w or vice
versa.

Fact 1 The index k of the equivalence relation ≡x obeys k ≤ 2n.

When it comes to motifs with at least one don’t care, it is desirable to obtain as small a basis as
possible. Towards this, let x and y be two strings with m = |x| ≤ |y| = n. The consensus of x and y
is the string z1z2...zm on Σ∪ ‘.‘ defined as: zi = xi if xi = yi and zi = ‘.‘ otherwise (i = 1, 2, ..., m).
Deleting all leading and trailing don’t care symbols from z yields a (possibly empty) motif that is
called the meet of x and y. The following general property [7] (cf. proof given in the Appendix)
shows that the irredundant 2-motifs are to be found among the pairwise meets of all suffixes of s.

Theorem 1 Every irredundant 2-motif in s is the meet of two suffixes of s.

An immediate consequence of Theorem 1 is a linear bound for the cardinality of our set of
irredundant 2-motifs: by maximality, these motifs are just some of the n − 1 meets of s with its
own suffixes. Thus

Theorem 2 The number of irredundant 2-motifs in a string x of n characters is O(n).

With its underlying convolutory structure, Theorem 1 suggests a number of immediate ways for
the extraction of irredundant motifs from strings and arrays, using available pattern matching with
or without FFT. We refer to [1] for a nice discussion of these alternatives. Specific “incremental”
algorithms are also available [7] that find all irredundant 2-motifs in time O(n3). The paradigm
explored there is that of iterated updates of the set of base motifs Bi in a string under consecutive
unit symbol extensions of the string itself. Such an algorithm is thus incremental and single-pass,
which may lend itself naturally to applications of the kind considered here. The construction
used for our experiments must take into account additional parameters related to the density of
solid characters, the maximum motif length and minimum allowed number of occurrences. This
algorithm is described next.
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3 The Pattern Discovery Algorithm

The algorithm follows a standard approach to association discovery: it begins by computing el-
ementary patterns of high quorum and then successively extends motifs one solid character at a
time until this growth must stop. In general, one drawback of this approach is that the number of
patterns at each step grows very rapidly. In our case, the patterns being grown are chosen among
O(n2) substrings of pairwise suffix meets, so that no more than O(n3) candidates are considered
overall. Trimming takes place at each stage, based on the quorum, to keep the overall number of
growing patterns bounded. Thus our basis can be detected in polynomial time.

The algorithm makes recurrent use of a routine that solves the following

Set Union Problem, SUP(n, q). Given n sets S1, S2 . . . , Sn on q elements each, find all the sets
Si such that Si = Si1 ∪ Si2 ∪ . . . ∪ Sip i 6= ij , 1 ≤ j ≤ p. We present an algorithm in Appendix B
to solve this problem in time O(n2q).

Input Parameters. The input parameters are: (1) the string s of length n, (2) the quorum k,
which is the minimum number of times a pattern must appear, and (3) the maximum number D of
consecutive ‘.’ characters allowed in a motif. For convenience in exposition, the notion of a motif
is relaxed to include singletons consisting of just one character.

For the rest of the algorithm we will let m1.
dm2 denote the string obtained by concatenating the

elements m1 followed by d ‘.’ characters followed by the element m2. Also, recall that Lm = {i|m
occurs at i on s}.

Computing the basis
The algorithm proceeds in the following steps. M is the set of motifs being constructed.

1. M = M ′ ← {m′ = σ ∈ Σ and Lm′ ≥ k}

2. (a) Let σi.
dm, with 0 ≤ d ≤ D, denote the left extension of the motif m along a meet. For

each motif m′ ∈ M ′, use meets to compute all of its possible left extensions and store
them in the set M ′′.

For every m′′ ∈ M ′′, if |Lm′′ | < k then M ′′ ← M ′′ − {m′′}
(b) Remove all redundant motifs.

For each mi ∈ M , with mi ¹ m′′
j for some m′′

j ∈ M ′′,
if ∃ m′′

i1
,m′′

i2
, . . . m′′

ip ∈ M ′′, p ≥ 1 such that
mi ¹ m′′

ij
and

Lmi = Lm′′
i1

+f1
∪ Lm′′

i2
+f2

. . . ∪ Lm′′
ip

+fp
then

M ← M − {mi}.
The above is solved using an instance of the SUP() problem.

(c) Update the basis and M ′.
M ← M ∪M ′′; M ′ ← M ′′

3. The previous step is repeated until no changes occur to M .

The algorithm works by iterated extensions of motifs previously in M , where at each iteration a
motif is extended (to the left) by zero or more don’t cares followed by precisely one solid character.
Thus, at the end of the i-th iteration of Step 2, the set M contains motifs with at most i + 1 solid
characters. As there can be no more that n solid characters in a meet, the number of iterations is
bounded by n. Since motifs come from meets at all times, and at most one new motif is considered
at one iteration for every ending position on a meet, we have that M ′ and M ′′ are each bounded
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by O(n2), whereas the elements in M are O(n3) at all times (in fact, much fewer in practice). At
each iteration we have O(n2) extensions to perform. By solving the SUP(n3, n), the algorithm
must now try and cover each motif in M by using the new O(n2) ones in M ′′. Step 2-b ensures
that no motif currently in the set M can be deduced with its location list from the union of other
discovered motifs. In other words, the elements of M are irredundant relative to M itself, in the
sense that no member of M can be inferred from the others. The following claim gives a sharper
characterization of the set M .

Theorem 3 Let M (i) be the set generated by the pattern discovery algorithm at step i, 0 ≤ i ≤ n.
Then M (i) contains every k-motif m such that:

1. m is a substring of the meet of two suffixes, with at most i+1 solid characters and density D.

2. m is irredundant relative to the elements of M (i).
Moreover,

3. for every k-motif with these properties not in M (i), there are motifs in M (i) capable of gener-
ating it.

4. M (i) is a minimum cardinality set with such properties.

Proof: The claim holds trivially prior to the first iteration. In fact, by initialization M = M (0) =
{m = σ is a substring of a meet and m has at least k occurrences }. Clearly, the elements of M (0)

are mutually irredundant since they correspond each to a distinct character and hence there is no
way to express one of them using the others. M (0) is also exhaustive of such motifs, so that no
character of quorum k is left out. At the same time, M (0) is the smallest set capable of generating
itself. The first time Step 2 is executed this generates all distinct motifs in the form σ1.

dσ2 that
are substrings of meets of quorum k. These motifs are stored in M ′′. As they are all distinct, they
cannot express each other, and the only possibility is for them to obliterate single characters. The
latter are now in M ′, which coincides with M . Through Step 2, a single-character motif m = σ is
eliminated precisely when it can be synthesized by two-character motifs that either begin or end by
σ. As all and only such singletons are eliminated, this propagates all claimed properties. Assuming
now the claim true up to step i − 1 ≥ 2, consider the i-th execution of Step 2. We note that, in
an application of Step 2-b, any motif in the set which is used to eliminate motif m must coincide
with m on each and every solid character of m. Therefore, no one of the newly introduced motifs
with exactly i + 1 solid characters can be expressed and discarded using different motifs with i + 1
solid characters, or (even worse) motifs with less than i solid characters. Consequently, no such
motif can be discarded by this execution of Step 2-b. Also, no collection of motifs formed solely
by members of M (h) with h < i can be used to discard other motifs, since, by the operation of the
algorithm, any such action would have to have already taken place at some prior iteration. Finally,
no mixed collection formed by some new motifs in M ′′ and motifs currently in M can obliterate
motifs in M . In fact, such an action cannot involve only suffixes of the members of M ′′, or it would
have had to be performed at an earlier iteration. Then, it must involve prefixes of motifs in M ′′.
But any such prefix must have been already represented in M , by the third invariant condition.

In conclusion, the only thing that can happen is that motifs currently in M are obliterated
by motifs with i + 1 solid characters, currently in M ′′. At the beginning of step i, all and only
the qualifying k-motifs with i characters are by hypothesis either present directly or generated by
motifs in M (i−1), which represents also the smallest possible base for the collection of these motifs.
The algorithm extends all the motifs in M (i−1) along a meet of two suffixes, hence all candidate
extensions are considered. Now, the net worth of Step 2 is in the balance between the number of
newly introduced motifs with i+1 solid characters and the number of motifs with i solid characters
that get discarded. Assume for a contradiction that a base M̂ exists at the outset which is smaller
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than M (i−1). Clearly, this savings cannot come from a reduction in the number of motifs with i+1
solid characters, since eliminating any one of them would leave out a qualifying motif and play
havoc with the notion of a base. Hence, such a reduction must come from the elimination of some
extra motifs in M (i−1). But we have argued that all and only the motifs in M (i−1) that can be
eliminated are in fact eliminated by the algorithm. Thus M (i) must have minimum cardinality.

Theorem 4 The set M at the outset is unique.

Proof: Let h be the first iteration such that from M (h−1) we can produce two sets, M (h) and
M̄ (h), such that M (h) 6= M̄ (h) but |M (h)| = |M̄ (h)|. Clearly, the members of M ′′ that come from
extensions of M (h−1) must belong both to M (h) and M̄ (h). Hence the two sets must differ by way
of an alternate selection of the members of M (h−1) that are eliminated on behalf of the motifs in
M ′′. But it is clear that any motif that could be, but is not eliminated by M ′′ will fail to comply
with the second clause of the preceding theorem. Hence no option exists in the choice of motifs to
be eliminated.

4 Implementation and Experiments

Each phase of our steepest descent paradigm alternates the selection of the pattern to be used in
compression with the actual substitution and encoding. The sequence representation at the outset
is finally pipelined into some of the popular encoders and the best one among the overall scores
thus achieved is retained. By its nature, such a process makes it impossible to base the selection
of the best motif at each stage on the actual compression that will be conveyed by this motif in
the end. The decision performed in choosing the pattern must be based on an estimate, that also
incorporates the peculiarities of the scheme or rewriting rule used for encoding. In practice, we
estimate at log i the number of bits needed to encode the integer i (we refer to, e.g., [5] for reasons
that legitimate this choice). In one scheme (hereafter, Code1) [6], we eliminate all occurrences of
m, and record in succession m, its length, and the total number of its occurrences followed by the
actual list of such occurrences. Letting |m| denote the length of m, fm the number of occurrences
of m in the textstring, |Σ| the cardinality of the alphabet and n the size of the input string, the
compression brought about by m is estimated by subtracting from the fm|m| log |Σ| bits originally
encumbered by this motif on s, the expression |m| log |Σ| + log |m| + fm log n + log fm charged by
encoding, thereby obtaining:

G(m) = (1)
(fm − 1)|m| log |Σ| − log |m| − fm log n− log fm.

This is accompanied by a fidelity loss L(m) represented by the total number of don’t cares in-
troduced by the motif, expressed as a fraction of the original length. If d such gaps were introduced,
this would be:

L(m) =
fmd log |Σ|

fm|m| log |Σ| =
d

|m| . (2)

Other encodings are possible (see, e.g., [6]). In one scheme (hereafter, Code2), for example,
every occurrence of the chosen pattern m is substituted by a pointer to a common dictionary
copy, and we need to add one bit to distinguish original characters from pointers. The space

8



originally occupied by m on the text is in this case (log |Σ| + 1)fm|m|, from which we subtract
|m| log |Σ| + log |m| + log |fm| + fm(log D + 1), where D is the size of the dictionary, in itself a
parameter to be either fixed a priori or estimated.

The tables and figures below were obtained from preliminary experiments. The major burden
in computations is posed by the iterated updates of the motif occurrence lists, that must follow
the selection of the best candidate at each stage. This requires maintaining motifs with their
occurrences in a doubly linked list as in Fig. 1: following each motif selection, the positions of
the text covered by its occurrences are scanned horizontally. Next, proceeding vertically from each
such position, the occurrences of other motifs are removed from their respective lists.

To keep time manageable, most of the experiments were based on a small number of iterations,
typically in the range 250-3,000. For Book1, for instance, more than 30k motifs could be extracted.
Each one of these would convey some compression if used, but time constraints allowed only less
than 10% to be implemented. In the pattern discovery stage, a maximum length for motifs was
enforced at about 40 to 50 characters, and a threshold of 5 or 6 was put on the overall number
of don’t care allowed in a single motif, irrespective of its length. The collection of these measures
made it possible to test the method on a broad variety of inputs. By the same token, the resulting
scores represent quite a conservative estimate of its potential.

The tables summarize scores related to various inputs under various acceptances of loss. Table
1 refers to 8-bit grey-level images as a function of the don’t care density allowed (last column). The
next table, Table 2 shows results on black and white pictures. These are similar except in this case
the loss of one bit translates into that of 1 byte. By their nature, binary or dithered images such
as in faxsimile transmission seem to be among the most promising applications of our method. At
the same time, it has already been reported that “directional” lossy textual substitution methods
can compete successfully even with chrominance oriented methods like JPEG [1]. In view of the
results in [6], off-line lossy variants of the kind presented here should perform just as well and
probably better. Table 3 shows results for musical records sampled at 8 bits. For this family of
inputs, the motif extraction phase alone seems to present independent interest in applications of
contents-based retrieval.

Tables 5, 6, and 7 cover inputs from the Calgary Corpus and some yeast families. DNA sequences
represent interesting inputs for compression, in part because of the duality between compression
and structural inference or classification, in part due to the well know resiliency of bio-sequences
towards compression (see, e.g., [6] and references therein). Particularly for text (we stress that
lossy compression of bio-sequences is a viable classification tool), lossy compression may be not
very meaningful without some kind of reconstruction. As suggested at the beginning of the paper,
this might be left to the user in some cases. Otherwise, Table 4 list results obtained by exact
completions of the motifs involved in implementation of all of our lossy schemata. It suggests that
the bi-lateral context offered by motifs lends itself to better predictors than the traditional ones
based on the left context alone. In any case, the iteration of motif extraction at several consecutive
levels of hierarchy unveils structural properties and descriptors akin to unconventional grammars.

We use Figure 2 to display encodings corresponding to the images from Table 1. The single most
relevant parameter here is represented by the density of don’t care, which is reported in the last
column of the table and also evidenced by the black dots injected in figures at the last column. As
mentioned, the maximum length of motifs extracted had to be limited by practical considerations.
Even so, it was found that images rarely produce motifs longer than a few tens of characters.
More severe consequences of these practical restrictions came from the need to limit the number of
motifs actually deployed in compression, which was kept at those with at least 5 to 10 occurrences,
corresponding to a quite limited dictionary of 1,000 to 2,000 entries. Interpolation was carried out
by averaging from the two solid characters adjacent to each gap. The corresponding discrepancies
from the original pixel values reach into 16% in terms of % number of inexact pixels, but was found
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to be only a few percentage points if the variation in value of those pixels was measured instead as a
percentage of the affected pixels (next to last column of Table 8, and entirely negligible (a fraction
of a percent, see last column in Table 8) when averaged over all pixels. This is demonstrated in
the reconstructed figures, that show little perceptible change.

As mentioned, our main interest was testing the breadth of applicability of the method rather
that bringing it to the limit on any particular class of inputs. This is the scope of future work. In
the experiments reported here, the number of iterations (hence, motifs selected or vocabulary size)
was in the range of 250 to 1,000 and slightly higher (3,000) for the Calgary Corpus. The length
of motifs was limited to few tens of characters and their minimum number of occurrences to 20
or higher. Typically, motifs in the tens of thousands were excluded from consideration on these
grounds, which would have been provably capable of contributing savings.

Table 1: Lossy compression of gray-scale images (1 pixel = 1 byte).

file file len GZip len Codec2 Codec1 %Diff %loss ‘.’/
[%compr] [%compr] [%compr] gzip char

bridge 66336 61657[7.05] 60987[8.06] 57655[13.08] 6.49 0.42 1/4
60987[8,06] 50656[23.63] 17.84 14.29 1/3

camera 66336 48750[26.51] 47842[27.88] 46192[30.36] 5.25 0.74 1/6
48044[27.57] 45882[30.83] 5.88 2.17 1/5
47316[28.67] 43096[35.03] 11.60 9.09 1/4

lena 262944 234543[12.10] 226844[13.73] 210786[19.83] 10.13 4.17 1/4
186359[29.13] 175126[33.39] 25.33 20.00 1/3

peppers 262944 232334[11.64] 218175[17.03] 199605[23.85] 14.09 6.25 1/4
180783[31.25] 173561[33.99] 25.30 20.00 1/3

Table 2: Lossy compression of binary images.

file file len GZip len Codec2 Codec1 %Diff %loss ‘.’/
[%compr] [%compr] [%compr] GZip char

ccitt7 513229 109612[78.64] 98076[80.89] 91399[82.19] 16.62 16.67 1/5
93055[81.87] 90873[82.29] 17.10 16.67 1/4
92658[81.95] 85391[83.36] 22.10 25.00 1/3

test4 279213 58736[78.96] 57995[79.23] 54651[80.42] 6.95 0,91 1/4
57714[79.32] 54402[80.51] 7.38 1.27 1/3

5 LZW Encoding

Ziv and Lempel designed a class of compression methods based on the idea of back-reference:
while the textfile is scanned, substrings or phrases are identified and stored in a dictionary, and
whenever, later in the process, a phrase or concatenation of phrases is encountered again, this is
compactly encoded by suitable pointers or indices [20, 30, 31]. In view of Theorem 1 and of the good
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Figure 1: Compression and reconstruction of images. The original is on the first column, next to its reconstruction
by interpolation of two closest solid pixels. Black dots used in the figures of the last column are used to display the
distribution of the don’t care characters. Compression of “Bridge” at 1/4 and 1/3 (shown here) ’.’/char densities
yields savings of 6.49% and 17.84% respectively. Correspondingly. 0,31% and 12,50% of the pixels differ from original
after reconstruction. The lossy compression of Camera at 1/4 ’.’/char density saves 11.60% over GZip. Only 6.67%
of pixels differ from the original after reconstruction. Gains by “Lena” at 1/4 and 1/3 (shown) ’.’/char density
are respectively of 10,13% and 25,33%, while interpolation leaves resp. 3,85% and 10,13% differences from original.
For “Peppers” (last row), the gains at 1/4 and 1/3 (shown) ’.’/char densities were respectively 14,09% (5,56% the
corresponding difference) and 25,30% (16,67% diff).
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Table 3: Lossy compression of music (1 sample = 1 byte).

file file len GZip len Codec2 Codec1 %Diff %loss ‘.’/
[%compr] [%compr] [%compr] GZip char

crowd 128900 103834[19.44] 92283[28.41] 86340[33.01] 16.85 16.67 1/3
eclipse 196834 171846[12.96] 148880[24.36] 139308[29.22] 18,93 9.09 1/4

114709[41.72] 111058[43.57] 35.37 25.00 1/3

Table 4: Lossy vs. lossless performance.

file file dim GZip Codec1 %loss ‘.’/ Lossless %Diff
[%compr] [%compr] char [%compr] GZip

bridge 66336 61657[7.05] 50656[23.63] 14.29 1/3 59344[10.54] 3.75
camera 66336 48750[26.51] 43096[35.03] 9,09 1/4 45756[31.02] 6.14

lena 262944 234543[12.10] 175126[33.39] 20.00 1/3 199635[24.07] 14.88
peppers 262944 232334[11.64] 199605[23.85] 6.25 1/4 211497[19.56] 8.97

173561[33.99] 20.00 1/3 195744[25.55] 15.75
ccitt7 513229 109612[78.64] 90873[82.29] 16.67 1/4 97757[80.09] 10.82

85391[83.36] 25.00 1/3 89305[82.59] 18.53
test4 279213 58736[78.96] 54402[80.51] 1.27 1/3 54875[80.34] 6.57
crowd 128900 103834[19.44] 86340[33.01] 16.67 1/3 96903[24.82] 6.68
eclipse 196834 171846[12.96] 139308[29.22] 9.09 1/4 159206[19.11] 7.36

111058[43.57] 25.00 1/3 151584[22.98] 11.97

performance of motif based off-line compression [8], it is natural to inquire into the structure of ZL
and ZLW parses which would use these patterns in lieu of exact strings. Possible schemes along
these lines include, e.g., adaptations of those in [26], or more radical schemes in which the innovative
add-on inherent to ZLW phrase growth is represented not by one symbol alone, but rather by that
symbol plus the longest match with the substring that follows some previous occurrence of the
phrase. In other words, the task of vocabulary build-up is assigned to the growth of (candidate),
perhaps irredundant, 2-motifs.

Of the existing versions of the method, we recapture below the parse known as Ziv-Lempel-
Welch, which is incarnated in the compress of UNIX. For the encoding, the dictionary is initialized
with all the characters of the alphabet. At the generic iteration, we have just read a segment s of
the portion of the text still to be encoded. With σ the symbol following this occurrence of s, we
now proceed as follows: If sσ is in the dictionary we read the next symbol, and repeat with segment
sσ instead of s. If, on the other hand, sσ is not in the dictionary, then we append the dictionary
index of s to the output file, and add sσ to the dictionary; then reset s to σ and resume processing
from the text symbol following σ. Once s is initialized to be the first symbol of the source text, “s
belongs to the dictionary” is established as an invariant in the above loop. Note that the resulting
set of phrases or codewords obeys the prefix closure property, in the sense that if a codeword is in
the set, then so is also every one of its prefixes.

LZW is easily implemented in linear time using a trie data structure as the substrate [30, 31],
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Table 5: Lossless compression of Calgary Corpus.

file file len GZip Codec1 %loss ‘.’/ Lossless %Diff
[%compr] [%compr] char [%compr] GZip

bib 111261 35063[68.49] 36325[67.35] 3,70 1/3 37491[66.30] 6.92
book1 768771 313376[60.01] 245856[68.01] 12.50 1/3 277180[63.95] 11.55
book2 610856 206687[66.16] 197199[67.72] 4,35 1/4 202713[66.81] 1.92
geo 102400 68493[33.11] 40027[60.91] 16.67 1/4 63662[37.83] 7.05

news 377109 144840[61.59] 144541[61.67] 0.42 1/3 144644[61.64] 0.14
obj1 21504 10323[51.99] 8386[61.00] 16.67 2/5 9221[57.12] 10.68
obj2 246814 81631[66.93] 71123[71.18] 20.00 1/2 83035[66.36] -1.72

paper1 53161 18577[65.06] 19924[62.52] 1.75 1/3 20174[62.05] -8.60
paper2 82199 29753[63.80] 29920[63.60] 0.76 1/2 30219[63.24] -1.57

pic 513216 56422[89.01] 52229[89.82] 0.56 1/3 52401[89.79] 7.13
progc 39611 13275[66.49] 13840[65.06] 1.32 1/2 14140[64.30] -6.52
progl 71646 16273[77.29] 17249[75.92] 0.58 1/3 17355[75.78] -6.65
progp 49379 11246[77.23] 12285[75.12] 0.64 1/3 12427[74.83] -10.50

and it requires space linear in the number of phrases at the outset. Another remarkable property of
LZW is that the encoding and decoding are perfectly symmetrical, in particular, the dictionary is
recovered while the decompression process runs (except for a special case that is easily taken care
of).

We test the power of ZLW encoding on the motifs produced in greedy off-line schemata such
as above. Despite the apparent superiority of such greedy off-line approaches in capturing long
range repetitions, one drawback is in the encoding of references, which are bi-directional and thus
inherently more expensive than those in ZLW. Our exercise consists thus of using the motifs selected
in the greedy off-line to set up an initial vocabulary of motif phrases, but then encode these and
their outgrowth while we carry out a parse of the source string similar to that of ZLW. Assuming
that we have already selected the motifs to be used, this adaptation of ZLW to motifs requires to
address primarily the following problems:

1. We need to modify the parsing in such a way that for every chosen motif, every one of its
occurrences is used in the parsing.

2. We need to modify the dictionary in order to accommodate motifs in addition to strings. This
is to be done while retaining prefix closure.

To ensure that a motif is correctly detected and deployed in the parsing, it has to be stored
in the dictionary before its first occurrence is detected. This requires building a small dictionary
that needs to be sent over to the decoder together with the encoded string. In order to enforce the
prefix closure, all prefixes of a motif are inserted in the dictionary together with that motif.

With the dictionary in place, the parse phase of the algorithm proceeds in much the same way
as in the original scheme, with the proviso that once a motif is chosen, then all of its occurrences
are to be deployed. For this, the algorithm looks at each stage for the longest substring in the
tree that does not interfere with the next motif occurrence already allocated from previous stages.
The motif chosen in this way is then concatenated with the symbol following it and the result is
inserted in the dictionary. In order to avoid the insertion of undesired don’t cares in text regions
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Table 6: Lossless compression of sequences from DNA yeast families.

file file len GZip Codec1 %loss ‘.’/ Lossless %Diff
[%compr] [%compr] char [%compr] GZip

Spor EarlyII 25008 8008[67.98] 6990[72.05] 0.45 1/3 7052[71.80] 11.94
Spor EarlyI 31039 9862[68.23] 8845[71.50] 0.36 1/3 8914[71.28] 9.61
Helden CGN 32871 10379[68.43] 8582[73.89] 1.33 1/3 8828[73.14] 14.94
Spor Middle 54325 16395[69.82] 14839[72.68] 0.36 1/4 14924[72.53] 8.97
Helden All 112507 33829[69.93] 29471[73.81] 1.56 1/4 29862[73.46] 11.73
Spor All 222453 68136[69.37] 56323[74.68] 1.61 1/3 57155[74.31] 16.12

All Up 400k 399615 115023[71.22] 93336[76.64] 14.29 1/3 106909[73.25] 7.05

Table 7: Synopsis of compression rates for sequences in the yeast DNA by various lossless methods.
The figure in parenthesis is the percentage gain of Codec1 versus other methods.

Huffman LZ-78 LZ-77 BWT Codec1

File File Len Pack Compress GZip BZip Lossless
[%diff] [%diff] [%diff] [%diff]

Spor EarlyII 25008 7996[13.4] 7875[11.7] 8008[13.6] 7300[3.5] 7052
Spor EarlyI 31039 9937[11.5] 9646[8.2] 9862[10.6] 9045[1.5] 8914
Helden CGN 32871 10590[20.0] 10223[15.8] 10379[17.6] 9530[8.0] 8828
Spor Middle 54325 17295[15.9] 16395[9.9] 16395[9.9] 15490[3.8] 14924
Helden All 112507 36172[21.1] 33440[12.0] 33829[13.3] 31793[6.5] 29862
Spor All 222453 70755[23.8] 63939[11.9] 68136[19.2] 61674[7.9] 57155

All Up 400k 399615 121700[13.8] 115029[7.6] 115023[7.6] 112363[5.1] 106909

not encoded by motifs, that symbol is treated as mismatching all other characters at this stage of
the search.

Decoding is easier. The recovery follows closely the standard ZLW, except for initialization of
the dictionary. The only difference is thus that now the decoder receives, as part of the encoding,
also an initial dictionary containing all motifs utilized, which are used to initialize the trie.

The tables below summarize results obtained on gray-scale images (Table 9, 1 pixel = 1 byte),
the Calgary Corpus (Table 10), and genetic data (Table 11). For each case, the compression is
reported first for lossy encoding with various don’t care densities, then also for the respective
lossless completions.

Conclusion

Irredundant motifs seem to provide an excellent repertoire of codewords for grammar based com-
pression and syntactic inference of documents of various kinds. Various completion strategies and
possible extensions (e.g., to nested descriptors) and generalizations (notably, to higher dimensions)
suggest that the notions explored here can develop in a versatile arsenal of data compression meth-
ods capable of bridging lossless and lossy textual substitution in a way that is both aesthetically
pleasant and practically advantageous. Algorithms for efficient motif extraction as well as for their
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Table 8: Compression, fidelity and loss in reconstruction of grey scale images.

%Loss per %Loss per
File File len GZip len Codec1 Diff % %Loss ’.’/ pixel over pixel over

[%compr] [%compr] GZip car recon pix all pix

bridge 66336 61657[7.05] 57655[13.08] 6.49 0.42 1/4 5.67 0.02
50656[23.63] 17.84 14.29 1/3 7.69 0.90

camera 66336 48750[26.51] 43090[35.03] 11.60 9.09 1/4 0.78 0.05
lena 262944 234543[12.10] 210786[19.83] 10.13 4.17 1/4 7.26 0.27

175126[33.39] 25.33 20.00 1/3 5.11 0.81
peppers 262944 232334[11.64] 199605[23.85] 14.09 6.25 1/4 1.53 0.08

173561[33.99] 25.30 20.00 1/3 3.29 0.52

Table 9: Lossy/Lossless compression of gray-scale images using LZW-like encoding.

File File len GZip LZW-like % Diff % Loss LZW-like % Diff ‘.’/
len lossy GZip lossless GZip car

bridge 66.336 61.657 38.562 37.46 0.29 38.715 37.21 1/4
38.366 37.78 5.35 42.288 31.41 1/3

camera 66.336 48.750 34.321 29.60 0.00 34.321 29.60 1/6
34.321 29.60 0.06 34.321 29.60 1/5
32.887 32.54 6.16 35.179 27.84 1/4

lena 262.944 234.543 120.308 48.71 1.36 123.278 47.44 1/4
123.182 47.48 7.32 135.306 42.31 1/3

peppers 262.944 232.334 117.958 49.23 1.75 121.398 47.75 1/4
119.257 48.67 4.45 129.012 44.47 1/3

efficient deployment in compression are highly desirable from this perspective. In particular, algo-
rithms for computing the statistics for maximal sets of non-overlapping occurrences for each motif
should be set up for use in gain estimations, along the lines of the constructions given in [10] for
solid motifs. Progress in these directions seems not out of reach.
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APPENDIX

A Proof of Theorem 1.

Let m be a 2-motif in B, and Lm = (l1, l2, . . . , lp) be its occurrence list. The claim is true for p = 2.
Indeed, let i = l1 and j = l2, and consider the meet m′ of sufi and sufj . By the maximality in
composition of m, we have that m′ ¹ m. On the other hand, for any motif m̂ with occurrences at
i and j it must be m̂ ¹ m′, whence, in particular, m ¹ m′. Thus, m = m′. Assume now p ≥ 3 and
that there is no pair of indices i and j in Lm such that m is the meet of sufi and sufj . Again, for
any choice of i and j in Lm, we must have that m ¹ m′, where m′ denotes as before the meet of
sufi and sufj . Therefore, we have that m ¹ m′ but m 6= m′ for all choices of i and j. Assume now
one such choice is made. By the maximality of m, it cannot be that m′ is the meet of all suffixes
with beginning in Lm. Therefore, there must be at least one index k such that m′ differs either
from the meet of sufk and sufi or from the meet of sufk and sufj , or from both. Let, to fix the
ideas, m′′ be this second meet. Since m ¹ m′′ and m ¹ m′ then Lm′ and Lm′′ are sublists of Lm,
by Lemma 1. In other words, Lm can be decomposed into two or more lists of maximal motifs
such that their union implies m and its occurrences. But this contradicts the assumption that m
is irredundant.

B The Set Union Problem, SUP(n, q).

Given n sets S1, S2 . . . , Sn on q elements each, find all the sets Si such that Si = Si1 ∪Si2 ∪ . . .∪Sip

i 6= ij , 1 ≤ j ≤ p.
This is a very straightforward algorithm (this contributes an additive term to the overall

complexity of the pattern detection algorithm): For each set Si, we first obtain the sets Sj

j 6= i, j = 1 . . . n such that Sj ⊂ Si. This can be done in O(nq) time (for each i). Next, we
check if ∪jSj = Si. Again this can be done in O(nq) time. Hence the total time taken is O(n2q).
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